
0-deb: A Container-First Linux
Distribution
Technical Whitepaper | Version 1.0

Executive Summary
0-deb is a container-first Linux distribution inspired by Debian, engineered specifically
for ephemeral container environments. Unlike general-purpose distributions that
retrofit container support onto desktop-oriented foundations, 0-deb is built from first
principles around container semantics: images are immutable, installations are always
fresh, and runtime footprint must be minimal.

The distribution is powered by two purpose-built tools:

Debflow — A software supply chain system that builds Debian-compatible packages
from upstream source with bit-for-bit reproducibility, multi-source vulnerability
tracking, and container-optimized maintainer scripts. Debflow produces packages with
enhanced metadata for transparent CVE identification and publishes a security feed
for accurate vulnerability scanning.

Captain (capt) — A drop-in replacement for apt designed exclusively for container
build phases. Captain uses the Pubgrub algorithm for dependency resolution, supports
object storage backends for package archives, and leaves zero footprint in final
images through its capt goodbye command.

Together, these components deliver a distribution where every package is
reproducible, every vulnerability is accurately tracked, and every container image
contains only what's necessary for the workload.

1. The Container Packaging Problem

Traditional Linux distributions carry assumptions incompatible with container deployment
models. This section examines the fundamental mismatches that 0-deb addresses.

1.1 Desktop-Oriented Package Defaults

Debian maintainer scripts assume persistent systems with init managers, interactive
operators, and upgrade paths. They invoke systemctl for service management, debconf for
interactive configuration, and version comparison logic for migrations. Containers are
ephemeral—they're replaced entirely, not upgraded in place. These assumptions cause
unnecessary complexity.

1.2 Package Manager Overhead

Traditional package managers like apt are designed for long-lived systems. They maintain
state databases, cache metadata, and support upgrade/removal operations irrelevant to
container builds. This infrastructure persists in final images, consuming space and
expanding the attack surface.

1.3 Vulnerability Attribution Across Naming Conventions

The National Vulnerability Database (NVD) and Debian use different naming conventions for
identical software. Security scanners querying NVD encounter systematic mismatches, e.g:
Oracle’s Berkleydb is packaged as db5.3. Also, scanners can only rely on Debian’s security
feed as vendor data is also not provided in package metadata.

2. 0-deb:

2.1 Components

0-deb Linux Distribution

Debflow​
(Package Build System)

Captain​
(Package Manager)

●​ Reproducible Builds
●​ Rolling Release
●​ Branch-aware CVE patching
●​ Agentic script transformation
●​ Minimal Dependency chains
●​ Multi arch: amd64 + arm64

●​ Pubgrub package solver
●​ S3-compatible backends
●​ Zero footprint cleanup
●​ Install-only semantics
●​ Drop-in apt replacement

2.2 Design Principles

Container-First: Every design decision optimizes for ephemeral, immutable container images
and deployment practices. Features irrelevant to this model are intentionally omitted.

Minimal Dependencies: Packages are built with reduced dependency chains, eliminating
optional components unnecessary for container workloads.

Zero Footprint: The package manager removes all traces of itself from final images, leaving
only installed software.

Single Rolling Release: 0-deb maintains one rolling release channel suited to container
builds. No need to track multiple distribution versions or coordinate upgrades across
releases.

Transparent Security: Enhanced metadata enables vulnerability scanners to accurately
identify CVEs without manual mapping configuration.

3. Captain: The Container Package Manager

Captain (capt) is a purpose-built package manager for container builds, designed as a drop-in
replacement for apt.

3.1 Design Philosophy

Install-only: Package installation is the only supported operation. Deletion and upgrade are
intentionally not implemented—containers are replaced, not modified.

Zero Footprint: After installation, capt goodbye removes all Captain artifacts including itself,
leaving only installed packages.

Build-Phase Tool: Captain exists only during image build. It never runs in deployed
containers.

3.2 Zero-Footprint Cleanup

The capt goodbye command removes all traces of Captain:

What capt goodbye Removes What Remains

Captain binary Installed package files

Package metadata and indices Created directories and symlinks

Download cache File permissions set by packages

None

Shell

Configuration files Installed packages metadata

3.3 Drop-in apt Replacement

Apt Command Capt Equivalent Notes

apt update capt update Fetch package indices

apt install pkg capt install pkg Install packages

apt install pkg=ver capt install pkg=ver Install specific package version

apt remove pkg - Not implemented

apt upgrade - Not implemented

Dockerfile migration is typically mechanical:

Before (apt)
RUN apt-get update && apt-get install -y nginx python3 \
 && apt-get clean && rm -rf /var/lib/apt/lists/*

After (capt)
RUN capt update && capt install nginx python3.13 && capt
goodbye

3.4 Object Storage Backend Support

Captain supports S3-compatible object storage for package archives:

Koala.sources file to be consumed by capt
deb [arch=amd64] s3://0deb-packages/0deb testing main

3.5 Pubgrub Dependency Resolution

Captain uses the Pubgrub algorithm for version solving, providing:

Optimal Solutions: Finds solutions satisfying all constraints or proves none exist

Clear Error Messages: When resolution fails, explains exactly which constraints conflict

Performance: Efficient backtracking for complex dependency graphs

Determinism: Same inputs always produce same resolution

3.6 Why No Remove or Upgrade?

Captain intentionally omits package removal and upgrade:

Remove: In containers, if you don't want a package, don't install it. Multi-stage builds handle
cases where build dependencies shouldn't appear in final images. Removal logic adds
complexity for a use case better served by build patterns.

Upgrade: Containers are immutable. To "upgrade," rebuild the image with new package
versions. In-place upgrades imply a persistent state that containers shouldn't have. The
single rolling release means the latest packages are always available for new builds.

4. Security Pipeline
Debflow implements a comprehensive security pipeline with automated CVE discovery,
branch-aware patching, and security feed publishing.

4.1 Branch-Aware CVE Patching
CVE-2025-12345 is discovered for a package. All versions < 3.5.1 are vulnerable. As a
response to this CVE, we will release fixed version 3.5.1 and if necessary and feasible, we
will backport the fix to 3.4.x branch in version 3.4.8-1.

Debflow correctly handles vulnerabilities across development branches:

fix_versions = ["3.5.1", "3.4.8-1"]
fix_branch("3.5.1") = "3.5"
fix_branch("3.4.1-1") = "3.4"

Status Determination:

Version State

3.4.0 Vulnerable

3.4.1-2 Fixed (in 3.4.1-1 for 3.4.x)

3.5.0 Vulnerable as fixed version for 3.5.x branch: 3.5.1 > 3.5.0

3.5.4 Fixed (Versions >= 3.5.1 aren’t vulnerable)

3.6.2 Fixed (Versions >= 3.5.1 aren’t vulnerable)

JSON

Status Meaning

fixed Our version >= fix version from same branch

open No fix available or fix is for different branch

not_affected Explicitly marked as not vulnerable

needs_review CVE not in Debian Security Tracker data

4.4 Security Feed

The security feed provides machine-readable vulnerability status:

{
 "package": {
 "CVE-2025-12345": {
 "fixed_in": [{

"version": "3.5.1",
"vulnerable_range": ">=3.5.0 <3.5.1"

 },
 {
​ "version": "3.4.8-1",
​ "vulnerable_range": "<3.4.8-1"
 }]

 },
 "CVE-2025-9232": {
 "fixed_in": []
 }
 },
 "python3.13": {
 "CVE-2024-12718": {
 "fixed_in": [{"version": "3.13.3-1"}]
 },
 "CVE-2024-3220": {
 "fixed_in": [{"version": 0}]
 }
 }
}

Feed semantics:

Field Description

fixed_in: [{"version": "X"}] Fixed in version X

fixed_in: [{"version": "3.5.4-1",
“vulnerable_range”: “>=3.5 <3.5.4-1”}]

Fixed in version 3.5.4-1 for 3.5.x
branch

fixed_in: [] Open, no fix available

fixed_in: [{"version": 0}] Not affected

Published at: https://security.0-deb.dev/feed.json

4.5 Grype Integration

0-deb publishes a security feed that is consumed by Anchore/Vunnel. When fully
integrated with grype, it enables Grype to recognise custom fixes specific to 0-deb.

The injected ZERODEB metadata is used on a custom patched version of Grype that
enables scanning of 0-deb’s packages without relying on distro’s security feed:

●​ Match packages to correct NVD products via embedded vendor/source name
fields

●​ Compare against upstream source versions
●​ Correlate with 0-deb security feed for accurate status

4.3 Automated Patched Version Packaging

Once a patch is either released upstream or is available in debian sources, the rest of
the process is fairly automated to release the fixed version at the earliest.

1.​ Detects new versions via “uscan” monitoring of upstream and Debian
2.​ Generates updated Debflow manifest(debify.yaml) with new patches,

checksums and snapshot sources
3.​ Applies agentic script transformation to maintainer scripts if it has changed in

the debian sources
4.​ Builds and tests packages for arm64 and amd64
5.​ Updates security feed with new fix versions
6.​ Publishes to repository

This mirrors Debian's security response while maintaining 0-deb's container
optimizations. In case CVE is fixed upstream first, the pipeline will release a new
version.

	0-deb: A Container-First Linux Distribution
	Executive Summary
	Together, these components deliver a distribution where every package is reproducible, every vulnerability is accurately tracked, and every container image contains only what's necessary for the workload.
	
	1. The Container Packaging Problem
	1.2 Package Manager Overhead
	Traditional package managers like apt are designed for long-lived systems. They maintain state databases, cache metadata, and support upgrade/removal operations irrelevant to container builds. This infrastructure persists in final images, consuming space and expanding the attack surface.
	1.3 Vulnerability Attribution Across Naming Conventions

	2. 0-deb:
	2.1 Components
	2.2 Design Principles

	3. Captain: The Container Package Manager
	3.1 Design Philosophy
	3.2 Zero-Footprint Cleanup
	3.3 Drop-in apt Replacement
	3.5 Pubgrub Dependency Resolution
	3.6 Why No Remove or Upgrade?

	4. Security Pipeline
	4.1 Branch-Aware CVE Patching
	4.4 Security Feed
	4.5 Grype Integration
	4.3 Automated Patched Version Packaging

